

Principles and Applications of Scintillators

Paul Lecoq CERN, Geneva

Scintillators according to various schemes

Transform dE/dx of an ionizing particle into light that can be measured by a photodetector

- Physical state
 - Solid
 - Liquid
 - Gas
- Structure
 - Single crystal
 - Ceramic
 - Glass

- Composition
 - Organic
 - Inorganic
- Scintillation mechanism
 - Intrinsic
 - Activated
 - Core-valence

Organic scintillators

Convert PART of the energy of the incident particle

organic scintillators low Z (C,H) \rightarrow

- low y-detection efficiency
- high n-detection efficiency via (np)

scintillation mechanism:

Delocalized π electron states of the Benzene molecule

- Organic crystals Anthracène, Trans-Stilbène, Naphtaline
- Organic liquids Solvent:Xylène,Toluène,benzène Solute:p-Terphénil, PBD, PPO, POPOP, 3g/l

Plastics

Solvent: polyvinyletoluène, polyphénilbenzène, polystyrène

Solute:PBD,pTerphénil ,PBO, second soluté POPOP,10g/l for wavelength shifting

Wavelength shifter

Principle of WLS:

Crystaline organic scintillators

crystal	Chemical formula	density	n	yield	emission wavelengthn nm
anthracene	$C_{14}H_{10}$	1,25	1,62	100	447
Trans- stilbene	$C_{14}H_{12}$	1,16	1,62	50	410
naphtalene	$C_{10}H_8$	1,162	1,62	30	340

- organic scintillators are usually very fast (a few ns)
- used for fast detection, time tagging, time of flight
- Anthracene has a very good yield: 1 optical photon per 60eV deposited energy

Plastic organic scintillator: plates

- Easily machined
- Large sizes available
- Good light transport with wavelength shifting using primary and secondary fluors
- Very fast~ns,
- Cheap
- Not very radiation hard

1 optical photon per 100 eV deposited energy

Plastic organic scintilator: fibers

Air: $n_0 = 1.0003$

Core, polystyrene: $n_1 = 1.59$

Cladding, acrylic: $n_2 = 1.49$

- Propagation in the core: $\phi_1 < 20.2^\circ$, $f_1 = 1 n_2/n_1 = 6.2\%$
- Propagation in the cladding: 20.2° < ϕ_1 < 51°, $f_2 = n_2/n_1 n_0/n_1 = 31\%$
- Lost in air: $\phi_1 > 51^\circ$, $f_0 = n_0/n_1 = 63\%$

Scintillating crystals for homogeneous calorimeters

- To convert ALL the energy of the incident particle in to light
- Necessity to use dense materials

- Above certain minimum level most scintillators are linear with respect to the energy deposited
- Light output is directly proportional to energy deposited

February 2011 Scintillating Screen Applications in Beam Diagnostics, GSI, 14-15 Feb. 2011 P. Lecoq CERN

RN <u>11</u>

A zoom on the conversion process (HEP)

 The energy conversion from incoming X or γ Rays is a complex process resulting from a cascade of events.

- Hadronic events are even more complex
 - Details of the full cascade for HEP with contributions from different conversion mechanisms: scintillation and Cerenkov, would lead to particle identification within the shower

How to choose a scintillator

- For charged particles: high p materials to increase dE/dx
- For X and γ -rays (but also high energy electrons, which radiate γ -rays by bremstrahlung) 3 mechanisms:
 - Photoelectric:
- $\sigma_{ph} \propto \frac{Z^5}{E_{c}^{7/2}}$

Compton:

- $\sigma_c \propto Z$
- Pair poduction:

 $\sigma_{pair} \propto Z^2 \ln(2E_{\gamma})$

- At low energy high photoelectric cross-section is desired
- At high energy good shower containment requires
 - Small radiation length:
 - Small Moliere radius:

Fundamental aspects of Scintillation

light

Different scintillation mechanisms

Relaxation of electronic excitations *intrinsic luminescence*

18

Evolution of energy distribution for 1000 eV electrons

CRYSTAL

CLEAR

CRYSTAL **Evolution of energy distribution for** 1000 eV electrons CLEAR 1.105 $t_{FRAME} = 3.911 \times 10^{-5}$ 1.104 electrons holes particle distribution $1 \cdot 10^{3}$ Im(-1/ɛ) Q____ 100 10 200 180 180 140 120 100 80 60 40 20 0 Lorgitudralahatonenerov 1 200 400 600 800 1000 200 0 particle energy, eV 1 ·10⁵ 1000 200 electrons excitons holes 1.10^{4} $1 \cdot 10^{3}$ 500 100 100 10 0-50 0 1 0 50 50 100 0 0

CRYSTAL **Evolution of energy distribution for** 1000 eV electrons CLEAR 1.105 $t_{FRAME} = 0.012$ 1.104 electrons holes particle distribution $1 \cdot 10^{3}$ 100 10 1_200 0 200 400 600 800 1000 particle energy, eV 2.10⁵ 4.10^{4} 1.105 excitons holes electrons 1.104 $1 \cdot 10^{3}$ 1.10⁵ 2·10⁴ 100 10 0_50 0 1 0 50 50 100 0 0 Scintillating Screen Applications in Beam Diagnostics, GSI, 14-15 Feb. 2011 P. Lecoq CERN February 2011 22

Evolution of energy distribution for CRYSTAL 1000 eV electrons CLEAR 1.10⁵ $t_{FRAME} = 0.099$ $1 \cdot 10^4$ electrons holes particle distribution 1 ·10³ 100 10 ¹/₂₀₀ 400 600 800 1000 0 200 particle energy, eV 4.10⁵ 1.10⁵ 1-10⁵ excitons electrons **1**.10⁴ holes 1.10^{3} 2.10⁵ 5 · 10⁴ 100 10 1 0 0 -50 0 0 50 50 100 0 Scintillating Screen Applications in Beam Diagnostics, GSI, 14-15 Feb. 2011 P. Lecoq CERN February 2011 23

Fundamental aspects of Scintillation

The 3 phases of the scintillation mechanism

Effect of traps

Effect of traps

Yield depends on electron ionization density

Non-Proportionality + Non-Uniform Energy Deposit Degraded Energy Resolution

Non-uniformity of electron energy deposit

February 2011

WIMP-Dark matter searches

Evidence of Dark Matter Rotation curve of spiral galaxies

Direct detection - elastic scattering off nuclei

Expected event rate < 0.1/kg day Detector mass 1kg-100 kg High radiopurity of detector

The BepiColombo Mercury mission

The Mercury Gamma-ray and Neutron Spectrometer (MGNS) Main characteristics

Goal: The gamma and neutron mapping of Mercury surface **Science objectives:**

- * The mapping of water content in Mercury subsurface
- * The mapping of Mercury soil composition

Parameters:

PARAMETER	VALUE		
Mass	5.2 kg		
Power	5 W		
Volume			
Surface Resolution	400 km		
Minimal time resolution	2-4 sec		
Energy range, neutrons	Multi energy bands covering 10 ⁻³ eV – 15 κeV		
Energy range, gamma	300 keV – 10 MeV		
Energy resolution, gamma	3% at 660 keV		
Detectors	3He – proportional counters, stilben crystal, LaBr ₃ crystal		
Temperature range	(-20C, 40C)		
Position	ESA: BepiColombo		
Altitude	400 km – 1500 km		

Cesa

Science Payload and Advanced Concepts

Oil Well Logging

Measurement Issues

- Source and sensor both in borehole
- Usually want to measure Formation
- Need to make measurement with 1-3 seconds of data

Active Instrumentation

Mobile and fixed position; X ray, ⁶⁰Co, ¹³⁷Cs Nal, CdWO₄, BGO Spectrometers, counters, imagers

8 Managed by UT-Battelle for the Department of Energy

February 2011 Scintillating Screen Applications in Beam Diagnostics, GSI, 14-15 Feb. 2011 P. Lecoq CERN 43

Scorellasor Applications in Novelland Security

Thank you